Abstract

AbstractWith the rapid development of flexible electronics and soft robotics, there is an emerging topic of preventing fracture in materials and devices integrated on largely bending film substrates of >100 µm thickness. The high demand for strategically reducing strain in bending materials requires a facile method that enables one to accurately and precisely analyze the surface bending strain in a wide variety of materials. This study proposes the surface‐labeled grating method that is the fundamental and efficient technique for measuring surface bending strains merely by labeling a thin, soft grating onto various film substrates composed of flexible polymeric and rigid inorganic materials. The surface strain with a single‐nanoscale (<1.0 nm) can be quantified in real time with no need of material information such as Poisson's ratio, Young's modulus, and film thickness. The fracture limit of a hard coating overlying flexible substrates is successfully determined by the accurate and precise quantification of surface bending strains. Furthermore, a multilayer film substrate with surface bending strain reduced by 50% prevents fractures of hard coatings and organic thin film transistors (OTFTs) since the strains remain below the fracture limit under large bending.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call