Abstract

Nanoscale fabrication and characterization techniques critically underpin a vast range of fields, including nanoelectronics and nanobiotechnology. Focused ion beam (FIB) techniques are appealing due to their high spatial resolution and widespread use for processing of nanostructured materials. Here, we introduce FIB-induced fluorescence spectroscopy (FIB-FS) as a nanoscale technique for spectroscopic detection of atoms sputtered by an ion beam. We use semiconductor heterostructures to demonstrate nanoscale lateral and depth resolution and show that it is limited by ion-induced intermixing of nanostructured materials. Sensitivity is demonstrated qualitatively by depth profiling of 3.5, 5, and 8 nm quantum wells and quantitatively by detection of trace-level impurities present at parts-per-million levels. The utility of the FIB-FS technique is demonstrated by characterization of quantum wells and Li-ion batteries. Our work introduces FIB-FS as a high-resolution, high-sensitivity, 3D analysis and tomography technique that combines the versatility of FIB nanofabrication techniques with the power of diffraction-unlimited fluorescence spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call