Abstract

Supercapacitors are widely used in many fields owing to their advantages, such as high power, good cycle performance, and fast charging speed. Among the many metal-oxide cathode materials reported for supercapacitors, NiMoO4 is currently the most promising electrode material for high-specific-energy supercapacitors. We have employed a rational design approach to create a nanorod-like NiMoO4 structure, which serves as a conductive scaffold for supercapacitors; the straightforward layout has led to outstanding results, with nanorod-shaped NiMoO4 exhibiting a remarkable capacity of 424.8 F g-1 at 1 A g-1 and an impressive stability of 80.2% capacity preservation even after 3500 cycles, which surpasses those of the majority of previously reported NiMoO4 materials. NiMoO4//AC supercapacitors demonstrate a remarkable energy density of 46.31 W h kg-1 and a power density of 0.75 kW kg-1. This synthesis strategy provides a facile method for the fabrication of bimetallic oxide materials for high-performance supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call