Abstract

This paper presents a new approach to nanosphere lithography, which overcomes undesirable manufacturing issues such as complex tilted-rotary evaporation and ion beam milling. A key innovation in this process is the use of non-conductive edge strips placed on top of the samples prior to metal removal. Such elements help to direct the flow of reactive ions during plasma etching and produce well-ordered arrays of metallic nanorings and nanocrescents over large areas of ∼1 cm2. The obtained highly uniform nanocrescent array exhibits an electric resonance of 1.7 μm and a magnetic resonance of 3 μm. The absorption resonances of the fabricated nanorings depend on their diameters and shift toward shorter wavelengths (λ = 1.7 μm for do = 308 nm) as compared to larger rings (λ = 2.2 μm do = 351 nm). FDTD-based simulations match well with the experimental results. This ‘shaped nanosphere lithography’ approach creates opportunities to generate nanorings and nanocrescents that promise potential applications in chemical and biological sensing, for surface enhanced spectroscopy and in the field of infrared metamaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call