Abstract
There is widespread interest in circulating tumor cells (CTCs) in blood. Direct detection of CTCs (often < 1/mL) is complicated by a number of factors, but the presence of ∼103 to 104 copies of target RNA per CTC, coupled with simple enrichments, can greatly increase detection capability. In this study we used resonance frequency shifts induced by mass-amplifying gold nanoparticles to detect a hybridization sandwich bound to functionalized nanowires. We selected PCA3 RNA as a marker for prostate cancer, optimized antisense binding sites, and defined conditions allowing single nucleotide mismatch discrimination, and used a hybrid resonator integration scheme, which combines elements of top-down fabrication with strengths of bottom-up fabrication, with a view to enable multiplexed sensing. Bound mass calculated from frequency shifts matched mass estimated by counting gold nanoparticles. This represents the first demonstration of use of such nanoresonators, which show promise of both excellent specificity and quantitative sensitivity. From the Clinical EditorCancer cell detection from blood is an emerging method for more sensitive screening for malignancies. In this work, RNA detection with nanoresonators is demonstrated to have high specificity and sensitivity, suggesting that such technology may be feasible for laboratory medicine-based cancer detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanomedicine: Nanotechnology, Biology, and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.