Abstract
Different global events such as industrial development and the population increment have triggered the presence and persistence of several organic and inorganic contaminants, representing a risk for the environment and human health. Consequently, the search and application of novel technologies for alleviating the challenge of environmental pollution are urgent. Nanotechnology is an emerging science that could be employed in different fields. In particular, Nanoremediation is a promising strategy defined as the engineered materials employed to clean up the environment, is an effective, rapid, and efficient technology to deal with persistent compounds such as pesticides, chlorinated solvents, halogenated chemicals, or heavy metals. Furthermore, nanoremediation is a sustainable alternative to eliminate emerging pollutants such as pharmaceutics or personal care products. Due to the variety of nanomaterials and their versatility, they could be employed in water, soil, or air media. This review provides an overview of the application of nanomaterials for media remediation. It analyzes the state of the art of different nanomaterials such as metal, carbon, polymer, and silica employed for water, soil, and air remediation.
Highlights
Contaminated water, soil, and air represent a critical world problem involving extreme environmental and human health risks
This review aims to discuss the applications of different types of nanomaterials in the context of water, soil, and air treatment, presenting current studies and approaches related to nanotechnology application for environmental remediation
The results revealed that approximately 90% of the compounds were removed in 10 h using powdered activated carbon, whereas the granular activated carbon achieved just 40% of removal after 70 h, which is related to the greater surface area of the powdered
Summary
Contaminated water, soil, and air represent a critical world problem involving extreme environmental and human health risks. Nanoremediation uses engineered nanomaterials to clean up polluted media, and this technique is less costly and more effective than most typical methods. In addition to its cost-effectiveness, the interest in applying nanomaterials for environmental remediation relies on the nanostructure’s characteristics. Nanoparticles (NPs) present sensitivity, high surface-area to mass ratio, exceptional electronic properties, and catalytic behavior (Corsi et al, 2018). Catalysis and chemical reduction can be regarded as the primary mechanisms for remediation by NPs. NPs have been employed in the removal process based on adsorption because NPs present a random distribution of active sites in their high surface area and a wide possibility of coating modifications (Guerra et al, 2018).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.