Abstract

Light trapping is essential to improve the performance of thin-film solar cells. In this paper, we performed a parametric optimization of nanopyramids and rear-located Ag nanoparticles that act as light trapping scheme to increase light absorption in thin-film c-Si solar cells. Our optimization reveals that the short-circuit current density in a solar cell employing only 5 μm silicon could exceed that of a standard 300 μm c-silicon wafer-based cell. Furthermore, we analyzed the underlying physics of the light absorption enhancement through the electric field intensity profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call