Abstract
In recent years, there has been growing interest in replacing petroleum-based water-in-oil (W/O) emulsifiers with sustainable and less toxic natural materials. Pickering emulsifiers are considered well-suited candidates due to their high interfacial activity and the ability to form emulsions with long-term stability. However, only sporadic examples of natural materials have been considered as inverse Pickering emulsifiers. This study describes the synthesis of a series of hydrophobic cellulose nanospheres by bulk modification with acyl groups of different chain lengths followed by nanoprecipitation, and their application as inverse emulsifiers. Modification with acyl groups of longer chain length (C16, C18) afforded lower degrees of substitution, but resulted in greater thermal stability than groups with shorter acyl chains (C12, C14). Formation of nanospheres with low aspect ratios and narrow size distributions required low initial cellulose concentrations (< 1% w/v), high volumetric ratios of antisolvent to solvent (> 10:1), and slow addition rates (< 20 mL/h). The modified cellulose nanospheres were able to reduce the interfacial tension between water and hexane from 45.8 mN/m to 31.1 mN/m, with an effect that increased with the number of carbons in the added acyl chains. The stearate-modified nanospheres exhibited superhydrophobic behavior, showing a contact angle of 156° ± 4° with water, and demonstrated emulsification performance comparable to the commonly used molecular surfactant sorbitan stearate. Our findings suggest that hydrophobically modified cellulose nanospheres have the potential to be a bio-derived alternative to traditional molecular W/O emulsifiers.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.