Abstract

Developing active and bifunctional noble metal-free electrocatalysts is crucial for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in the full water splitting process. A ternary nanoporous sulfur-doped copper oxide (Cu2OxS1-x) was successfully synthesized on Cu foam. The obtained Cu2OxS1-x/Cu shows robust electrocatalytic activity toward HER with a low overpotential of 40 mV at 10 mA cm-2 and a Tafel slope of 68 mV dec-1 and exhibits long-term stability in acid solution. Moreover, Cu2OxS1-x shows excellent electrocatalytic activity for OER, HER, and overall water splitting as a bifunctional catalyst in 1.0 M KOH electrolyte. The sulfur doping strategy implemented here can greatly improve the catalytic performance and stability in both acidic and alkaline water electrolyzers and presents an efficient catalyst for overall water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.