Abstract
The rapid detection of biomolecules greatly contributes to health management, clinical diagnosis, and prevention of diseases. Mass spectrometry (MS) is effective for detecting and analyzing various molecules at high throughput. However, there are problems with the MS analysis of biological samples, including complicated separation operations and essential pretreatments. In this study, a nanostructured organosilica substrate for laser desorption/ionization mass spectrometry (LDI-MS) is designed and synthesized to detect peptides and small proteins efficiently and rapidly. The surface functionality of the substrate is tuned by perfluoroalkyl/alkylamide groups mixed at a molecular level. This contributes to both lowering the surface free energy and introducing weak anchoring sites for peptides and proteins. Analyte molecules applied onto the substrate are homogeneously distributed and readily desorbed by the laser irradiation. The organosilica substrate enables the efficient LDI of various compounds, including peptides, small proteins, phospholipids, and drugs. An amyloid β protein fragment, which is known as a biomarker for Alzheimer's disease, is detectable at 0.05 fmol μL-1. The detection of the amyloid β at 0.2 fmol μL-1 is also confirmed in the presence of blood components. Nanostructured organosilica substrates incorporating a molecular-level surface design have the potential to enable easy detection of a wide range of biomolecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: ACS Applied Materials & Interfaces
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.