Abstract

The bicontinuous cubic (Q) lyotropic liquid crystal (LLC) phases formed by the phase-separation and self-organization of amphiphilic molecules in water are intriguing structures for a number of transport-related applications because they possess ordered, uniform, 3D-interconnected water channels on the size of single molecules. Polymeric materials formed from either the templated polymerization or cross-linking of conventional monomers around Q phases, or the direct polymerization or cross-linking of Q phases formed by reactive amphiphiles retain the desired LLC nanostructure but are more robust for true application development. The structures of Q LLC phases were only elucidated in the late 1980s, and the first successful preparation of polymers based on Q phases was reported soon after. However, the development and demonstration of these nanoporous polymers for material applications were not realized until the first decade of the twenty-first century. This focus review provides an overview of work in the area of Q LLC phase-based polymer materials, with a focus on the work of our research group and that of our collaborators on polymer networks prepared by the direct polymerization of reactive Q phases and their development as functional materials for several engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call