Abstract

Nanoporous barium titanate and lead titanate thin films (∼100 nm calculated from ellipsometric data) are prepared starting from sol-gel solutions modified with a commercially available block-copolymer and evaporation-induced self-assembly methodology. The tuning of the thermal treatment followed by in situ ellipsometry allows the decomposition of the organic components and of the structuring agent leading to the formation of porous tetragonal crystalline perovskite structures as observed by XRD, HRTEM, SEM, and ellipsoporosimetry. Both nanoporous barium titanate and lead titanate thin films present local piezoelectric and ferroelectric behavior measured by piezoresponse force microscopy (PFM), being promising platforms for the preparation of the generation of new multifunctional systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.