Abstract

The recovery of Li and rare metals from the spent electrodes of Li-ion batteries (LIBs) is becoming increasingly important. Herein, nanoporous multilayer graphene oxide (NMG) membranes were fabricated via the confined thermal annealing method to achieve Li-ion selectivity. A graphene oxide (GO) membrane was prepared by coating the membrane with an aqueous layer of GO liquid crystal via the scalable bar coating method, followed by hot-pressing. The influence of the GO interlayer spacing and nanopore presence on the ion separation performance was investigated. The NMG membrane shows different ion permeance phenomena depending on ion concentration. The permeation rate of divalent ions (Co, Ni, Mn) through the NMG membrane was faster than that of Li ions in solution with low ionic strength, whereas the membrane was Li-ion selective in mixed ionic solutions or at high ionic strength. This result indicates that electrostatic interaction by oxygen groups is important at low ionic strength, but size exclusion by interlayer spacing and adsorption by nanopore is critical at high ionic strength. The ion permeation mechanisms were further examined based on molecular calculations, which revealed that the binding energies between the divalent ions and nanopores or basal plane of graphene were high, resulting in slow ion permeation. When the NMG membrane was combined in a forward osmosis system, Li-ion can be separated continuously from the mixture solution simulated from the spent Li-battery electrode. This approach shows the high potential of nanoporous multilayer graphene membrane for Li extraction in particular with dense pore structure and around 7 Å of d-spacing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call