Abstract

Due to their extraordinary electrical and optical properties, dealloyed nanoporous metals and their derivatives have stimulated increasing interest in their sensing applications ever since dealloying was proposed to be a good strategy to fabricate uniform nanoporous metals. This article comprehensively and critically reviews the emerging nanoporous metal-based electrochemical, electronic, and optical sensors for both biological and chemical detection. We emphasize the underlying detection (or signal transduction) mechanisms, the unique roles and advantages/disadvantages of dealloyed nanoporous metals in sensing. Properties and preparations of different nanoporous metals, and their functionalizations are also highlighted in view of sensor developments. Finally, the perspective and current challenges of nanoporous metal-based sensing are outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.