Abstract
Control over porosity and exposed highly reactive facets is challenging in the area of materials science. Materials with high porosity and reactivity of exposed facets are favorable candidates in catalysis and energy storage. Here we demonstrate a facile template-free route to synthesize nanoporous LiMn2O4 nanosheets composed of single-crystalline LiMn2O4 nanorods with exposed {111} facets via an in situ lithiation of ultrathin MnO2 nanosheets. Nearly 100% of the initial capacity can be retained after 500 cycles at a 1C discharge rate using the nanoporous nanosheets as a cathode, whereas at a discharge rate of 25C, the capacity retention is about 86% of the initial capacity after 500 cycles. The durable cycling performance and high capacity retention can be attributed to the intrinsic highly oriented crystallinity, two-dimensional (2D) nanoporosity and exposed {111} facet of the nanosheet cathode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.