Abstract

Photocatalytic N2 reduction reaction (PNRR) offers a promising strategy for sustainable production of ammonia (NH3). However, the reported photocatalysts suffer from low efficiency with great room to improve regarding the charge carrier utilization and active site engineering. Herein, a porous and chemically bonded heterojunction photocatalyst is developed for efficient PNRR to NH3 production via hybridization of two semiconducting metal-organic frameworks (MOFs), MIL-125-NH2 (MIL=Material Institute Lavoisier) and Co-HHTP (HHTP=2,3,6,7,10,11-hexahydroxytripehenylene). Experimental and theoretical results demonstrate the formation of Ti-O-Co chemical bonds at the interface, which not only serve as atomic pathway for S-scheme charge transfer, but also provide electron-deficient Co centers for improving N2 chemisorption/activation capability and restricting competitive hydrogen evolution. Moreover, the nanoporous structure allows the transportation of reactants to the interfacial active sites at heterojunction, enabling the efficient utilization of charge carriers. Consequently, the rationally designed MOF-based heterojunction exhibits remarkable PNRR performance with an NH3 production rate of 2.1 mmol g-1 h-1, an apparent quantum yield (AQY) value of 16.2% at 365 nm and a solar-to-chemical conversion (SCC) efficiency of 0.28%, superior to most reported PNRR photocatalysts. Our work provides new insights into the design principles of high-performance photocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.