Abstract

We report for the first time the highly selective semihydrogenation of alkynes using the unsupported nanoporous gold (AuNPore) as a catalyst and organosilanes with water as a hydrogen source. Under the optimized reaction conditions, the present semihydrogenation of various terminal- and internal-alkynes affords the corresponding alkenes in high chemical yields and excellent Z-selectivity without any over-reduced alkanes. The use of DMF as solvent, which generates amines in situ, or pyridine as an additive is crucial to suppress the association of hydrogen atoms on AuNPore to form H(2) gas, which is unable to reduce alkynes on the unsupported gold catalysts. The AuNPore catalyst can be readily recovered and reused without any loss of catalytic activity. In addition, the SEM and TEM characterization of nanoporosity show that the AuNPore catalyst has a bicontinuous 3D structure and a high density of atomic steps and kinks on ligament surfaces, which should be one of the important origins of catalytic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.