Abstract

Controlling sub-10 nm ligament sizes and open-shell structure in nanoporous gold (NPG) to achieve strained lattice is critical in enhancing catalytic activity, but it remains a challenge due to poor control of reaction kinetics in conventional dealloying approach. Herein, a ligament size-controlled synthesis of open-shell NPG bowls (NPGB) through hetero-epitaxial growth of NPGB on AgCl is reported. The ligament size in NPGB is controlled from 6 to 46 nm by varying the hydroquinone to HAuCl4 ratio. The Williamson-Hall analysis demonstrates a higher lattice strain in smaller ligament size. In particular, NPGB with 6 nm (NPGB 6) ligament size possess the highest strain of 15.4 × 10(-3) , which is nearly twice of conventional 2D NPG sheets (≈8.8 × 10(-3) ). The presence of high surface energy facets in NPGBs is also envisaged. The best electrocatalytic activity toward methanol oxidation is observed in NPGB 6 (27.8 μA μg(-1) ), which is ≈9-fold and 3-fold higher than 8 nm solid Au nanoparticles, and conventional NPG sheets. The excellent catalytic activity in NPGB 6 is attributed to the open-shell structure, lattice strain, and higher electro-active surface area, allowing efficient exposure of catalytic active sites to facilitate the methanol oxidation. The results offer a potential strategy for designing next generation electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.