Abstract
In more conventional gas reservoirs, gas flow is simple, uncomplicated, and described by simple flux pressure drop expressions. In shale reservoirs however, this relationship takes the form of a more complex and multiscale flow process involving special flow mechanisms. Shale gas reservoirs often contain a significant number of nanopores leading to an apparent permeability that depends on pore fluid type, pore structure and pressure differentials. The complex geometry of shale reservoirs has drastically stimulated basic research on the transport mechanisms involved in the extraction of gas from shale formations. This study is aimed at studying the gas flow in nano pores. In this paper, permeation experiments for methane flow through nanoporous membranes were conducted and the effect of the pore size and pressure on the behaviour of the gas was analysed. The results obeyed the criteria to divide the flow stage into Darcy and Non-Darcy flow. As the pressure increases, the reservoir permeability also increases, and the gas tends to move faster thereby increasing the rate at which it flows per unit area in the system regardless of the temperature difference which means pressure gradient establishes the direction and rate of flow of gas in a reservoir.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Engineering, Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.