Abstract

Spongy carbon nanostructures, also called schwarzites, have been synthesized. They consist of highly connected covalent networks, periodic in the three dimensions of Euclidean space. The intimate structure of schwarzites has a topology of triply periodic minimal surfaces. They can be tessellated by some geometric operations on maps, including the newly proposed septupling operations. Formulas for calculating the lattice parameters of iteratively transformed maps are presented. Examples are given for both finite/closed cages and infinite/open all-sp2 carbon structures. Strain energy calculations for structures, consisting of thousands of atoms, show that such carbon allotropes are very relaxed and approach to the non-strained graphite sheet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call