Abstract

Nanoporous activated carbon prepared from rice husk through precarbonisation at 400 °C and phosphoric acid activation at 800 °C was used as fluidized bed in Fenton oxidation of the o, p and m-cresols in aqueous solution. The efficiencies of homogeneous Fenton oxidation, fluidized Fenton oxidation and aerobic biological oxidation systems for the removal of o, p and m-cresols in aqueous solution have been compared. The kinetic constants and the thermodynamic parameters for the homogeneous Fenton, heterogeneous Fenton and aerobic biological oxidations of o, p and m-cresols in synthetic wastewater were determined. The degradation of cresols in synthetic wastewater was confirmed using FT-IR, (1)H-NMR and UV-visible spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.