Abstract

IntroductionBi-allelic mutations in the gene for glucocerebrosidase (GBA) cause Gaucher disease, an autosomal recessive lysosomal storage disorder. Gaucher disease causing GBA mutations in the heterozygous state are also high risk factors for Parkinson's disease (PD). GBA analysis is challenging due to a related pseudogene and structural variations (SVs) that can occur at this locus. We have applied and refined a recently developed nanopore DNA sequencing method to analyze GBA variants in a clinically assessed New Zealand longitudinal cohort of PD. MethodWe examined amplicons encompassing the coding region of GBA (8.9 kb) from 229 PD cases and 50 healthy controls using the GridION nanopore sequencing platform, and Sanger validation. ResultsWe detected 23 variants in 21 PD cases (9.2% of patients). We detected modest PD risk variant p.N409S (rs76763715) in one case, p.E365K (rs2230288) in 12 cases, and p.T408 M (rs75548401) in seven cases, one of whom also had p.E365K. We additionally detected the possible risk variants p.R78C (rs146774384) in one case, p.D179H (rs147138516) in one case which occurred on the same haplotype as p.E365K, and one novel variant c.335C > T or p.(L335 = ), that potentially impacts splicing of GBA transcripts. Additionally, we found a higher prevalence of dementia among patients with GBA variants. ConclusionThis work confirmed the utility of nanopore sequencing as a high-throughput method to identify known and novel GBA variants, and to assign precise haplotypes. Our observations may contribute to improved understanding of the effects of variants on disease pathogenesis, and to the development of more targeted treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call