Abstract

Novel nanoporous thermosetting films were obtained from thermostable polycyanurate (PCN)-based hybrid networks synthesized by polycyclotrimerization of cyanate ester of bisphenol E in the presence of a modifier reactive toward cyanate groups, i.e. dihydroxy-telechelic poly( ε-caprolactone) (PCL). The nanoporous structure was generated in PCN/PCL hybrid networks after extraction of unreacted free PCL sub-chains which were not chemically incorporated into the PCN cross-linked framework. Structure–property relationships for precursory and porous PCN/PCL hybrid networks were investigated using a large array of physico-chemical techniques. The porosity associated with the networks after extraction was more particularly evaluated by SEM and DSC-based thermoporometry: pore sizes around 10–90 nm were determined along with pore volumes as high as about 0.3 cm 3 g −1. Density and dielectric measurements strongly suggested the occurrence of closed pore structures. Due to their high thermal stability as investigated by TGA, nanoporous PCN/PCL hybrid cross-linked films could be considered as promising materials for potential applications as thermostable membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.