Abstract

The human telomere repeat sequence 5′-TTAGGG-3′ is a hot spot for oxidation at guanine, yielding 8-oxo-7,8-dihydroguanine (OG), a biomarker of oxidative stress. Telomere shortening resulting from oxidation will ultimately induce cellular senescence. In this study, α-hemolysin (α-HL) nanopore technology was applied to detect and quantify OG in the human telomeric DNA sequence. This repeat sequence adopts a basket G-quadruplex in the NaCl electrolyte used for analysis that enters the α-HL channel, slowly unfolds, and translocates. The basket fold containing OG disrupts the structure, leading to >10× increase in the unfolding kinetics without yielding a detectable current pattern. Therefore, detection of OG with α-HL required labeling of OG with aminomethyl-[18-crown-6] using a mild oxidant. The labeled OG yielded a pulse-like signal in the current vs time trace when the DNA strand was electrophoretically passed through α-HL in NaCl electrolyte. However, the rate of translocation was too slow using NaCl salts, leading us to further refine the method. A mixture of NH4Cl and LiCl electrolytes induced the propeller fold that unravels quickly outside the α-HL channel. This electrolyte allowed observation of the labeled OG, while providing a faster recording of the currents. Lastly, OG distributions were probed with this method in a 120-mer stretch of the human telomere sequence exposed to the cellular oxidant 1O2. Single-molecule profiles determined the OG distributions to be random in this context. Application of the method in nanomedicine can potentially address many questions surrounding oxidative stress and telomere attrition observed in various disease phenotypes including prostate cancer and diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.