Abstract

The fundamental requirements for thermal comfort along with the unbalanced growth in the energy demand and consumption worldwide have triggered the development and innovation of advanced materials for high thermal-management capabilities. However, continuous development remains a significant challenge in designing thermally robust materials for the efficient thermal management of industrial devices and manufacturing technologies. The notable achievements thus far in nanopolyhybrid design technologies include multiresponsive energy harvesting/conversion (e.g., light, magnetic, and electric), thermoregulation (including microclimate), energy saving in construction, as well as the miniaturization, integration, and intelligentization of electronic systems. These are achieved by integrating nanomaterials and polymers with desired engineering strategies. Herein, fundamental design approaches that consider diverse nanomaterials and the properties of nanopolyhybrids are introduced, and the emerging applications of hybrid composites such as personal and electronic thermal management and advanced medical applications are highlighted. Finally, current challenges and outlook for future trends and prospects are summarized to develop nanopolyhybrid materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call