Abstract

Although the strengthening and toughening effects on ceramic composites are expected to be maximized by alignment of multi-walled carbon nanotubes (MWCNTs) in matrices, this concept has been rarely realized in practice due to the lack of convenient processing strategy. Here, the alignment of MWCNTs in alumina composite can be readily obtained by using α-Al2O3 nanoplates as raw powder. With the assistance of vacuum filtration and pressure in sintering, the highly aligned MWCNTs in alumina matrix are formed in in-plane direction. Accordingly, the strength and toughness in 1.5 wt% MWCNTs/alumina composite are improved by 58 % and 66 % with respect to monolithic alumina, respectively. Transmission electron microscopy observation reveals that the MWCNTs under great compressive residual stress are mainly embedded inside the grains, leading to much stronger grain boundaries. Meanwhile, the toughening effect is mainly attributed to the highly energy dissipating bridging and pullout, owing to the very effective load transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.