Abstract
Micro/nanoplastics (MPs/NPs) have attracted global attention for their potential adverse impacts on marine ecosystems. This study investigated the impacts of MPs/NPs (70 nm, 500 nm, and 2 µm) on population growth and life-history traits of marine rotifer (Brachionus plicatilis), and further explored the differences from the aspects of nutrient accumulation and metabolomic profiles. The results showed that 200 and 2000 µg/L 70 nm NPs significantly suppressed population growth, and negatively affected life span, the first spawning and breeding time, and fecundity in F0–F2 generation rotifers. Whereas 500 nm NPs and 2 µm MPs showed no effect on population growth 200 µg/L and only changed the life-history traits at the highest concentration. Moreover, 70 nm NPs were more easily accumulated in the rotifers and reduced food ingestion and nutrient accumulation, which caused more severe disruption on purine-pyrimidine metabolism, tricarboxylic acid cycle, and protein synthesis pathway compared to 500 nm NPs. Thus, the smaller the size of the plastic particles, the stronger the toxicity to the rotifers. This study provided new insights into the toxicity of MPs/NPs on marine zooplankton and proposed that metabolomics was powerful to explore the toxicity mechanisms of MPs/NPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.