Abstract

In aquatic environments, nanoplastics (NPls) can adsorb pharmaceuticals. However, throughout the scientific community, there is scarce knowledge about the interactive effects of the mixture nanoplastics (NPls) with pharmaceuticals to aquatic organisms. Therefore, this study aimed to investigate if the pharmaceutical diphenhydramine (DPH) toxicological effects alters when in presence of polystyrene NPls (PSNPls). To achieve this, Daphnia magna immobilization and different biochemical biomarkers (48-hours exposure) were assessed. Synergistic interactions occurred at environmentally relevant concentrations, PSNPls+DPH induced oxidative damage, whereas no effect was observed at single exposures. With the increase of PSNPls concentration, the DPH concentration causing 50% of effect (EC50) for organisms’ immobilization decreased to 0.001 mg/L. In silico analysis suggested that the DPH toxicity to D. magna occurs via the sodium-dependent serotonin transporter. The results showed interactive effects between PSNPls and DPH (implying harmful effects on D. magna), allowing more thoughtful decisions by society and policymakers regarding plastics and pharmaceuticals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.