Abstract

The transport of microplastics (MP) or nanoplastics (NP) in porous media has been widely reported. However, their mutual interaction and effect on cotransport remain unclear. Here, we investigated the colloidal interaction between NP (50 nm), submicroplastics (SP, 300 nm), and MP (1000 nm) in seawater and their cotransport in saturated natural sea sands. In the single-component suspension, the recovered mass percentage (Meff) of colloids was as follows: MP (47.81%) > NP (24.18%) > SP (21.66%). SP and MP remained monodispersed. MP had the highest mobility due to the strongest electrostatic repulsion with sand surface, whereas NP formed homoaggregates and was characterized by ripening phenomena. In the SP–MP mixture, SP and MP kept independent mobility without mutual effect. In the NP–SP–MP mixture, the Meff of MP was reduced by 10% because unstable NP induced MP to form heteroaggregates with SP, which could not pass through the pores. In addition, NP attached to the sand surface could form additional retention sites to retain MP. By contrast, SP showed a 13% increase in Meff because MP became an indirect carrier of SP through the bridging of NP. Overall, this study demonstrates the dominant role of unstable NP in the cotransport of NP–SP–MP in the marine sedimentary environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.