Abstract
In nematode Caenorhabditis elegans, exposure to polystyrene nanoparticles (PS-NPs) at predicted environmental concentrations can cause induction of transgenerational toxicity. However, the underlying mechanisms for toxicity formation of PS-NP in the offspring remain largely unknown. In this study, based on high-throughput sequencing, Ephrin ligand EFN-3 was identified as a target of KSR-1/2 (two kinase suppressors of Ras) in the germline during the control of transgenerational PS-NP toxicity. At parental generation (P0-G), exposure to 0.1-10 μg/L PS-NP caused the increase in expression of germline efn-3, and this increase in germline efn-3 expression could be further detected in the offspring, such as F1-G and F2-G. Germline RNAi of efn-3 caused a resistance to transgenerational PS-NP toxicity, suggesting that the activation of germline EFN-3 at P0-G mediated transgenerational PS-NP toxicity. In the offspring, Ephrin receptor VAB-1 was further activated by the increased EFN-3 caused by PS-NP exposure at P0-G, and RNAi of vab-1 also resulted in resistance to transgenerational PS-NP toxicity. VAB-1 acted in both the neurons and the germline to control toxicity of PS-NP in the offspring. In the neurons, VAB-1 regulated PS-NP toxicity by suppressing expressions of DBL-1, JNK-1, MPK-1, and GLB-10. In the germline, VAB-1 regulated PS-NP toxicity by increasing NDK-1 and LIN-23 expressions and decreasing EGL-1 expression. Therefore, germline Ephrin ligand EFN-3 and its receptor VAB-1 acted together to mediate the formation of transgenerational PS-NP toxicity. Our data highlight the important role of activation in germline Ephrin signals in mediating transgenerational toxicity of nanoplastics at predicted environmental concentrations in organisms.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.