Abstract

The utilization of plasmonic nanomaterials in catalytic technologies is an emerging research field with foreseeable applications in energy-catalytic technologies. On this front, the coupling of plasmonic nanomaterials with molecular catalysts is a newly approached, thus far unexploited field, that we discuss herein. In the present mini review, we contrast the case where the plasmonic particle itself is the catalytic center against the case where the plasmonic particle acts as a co-catalyst for an operational catalytic system. In the first part, we present an outline of the key phenomena in nanoplasmonics, and their potential implications in catalytic processes. The concepts of hot electrons, hot holes, and the dynamics of their generation and transfer are reviewed, as are the contribution of near-field and photothermal effects to catalytic processes. All these plasmonic-phenomena are then discussed in conjunction with representative catalytic systems from the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call