Abstract

Tumor-derived exosomes play a vital role in the process of cancer development. Quantitative analysis of exosomes and exosome-shuttled proteins would be of immense value in understanding cancer progression and generating reliable predictive biomarkers for cancer diagnosis and treatment. Recent studies have indicated the critical role of exosomal programmed death ligand 1 (PD-L1) in immune checkpoint therapy and its application as a patient stratification biomarker in cancer immunotherapy. Here, we present a nanoplasmonic exosome immunoassay utilizing gold-silver (Au@Ag) core-shell nanobipyramids and gold nanorods, which form sandwich immune complexes with target exosomes. The immunoassay generates a distinct plasmonic signal pattern unique to exosomes with specific exosomal PD-L1 expression, allowing rapid, highly sensitive exosome detection and accurate identification of PD-L1 exosome subtypes in a single assay. The developed nanoplasmonic sandwich immunoassay provides a novel and viable approach for tumor cell-derived exosome detection and analysis with quantitative molecular details of key exosomal proteins, manifesting its great potential as a transformative diagnostic tool for early cancer detection, prognosis, and post-treatment monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.