Abstract

Surface plasmons — light-induced oscillations of electrons at the surface of nanoplasmonic metallic nanoparticles or nanostructures — can be used in a wide range of applications. Such nanoplasmonic optical antennas can be interfaced with biological systems to answer diverse questions in life sciences and to solve problems in translational medicine. In particular, nanoplasmonics provide insight and solutions for intracellular exploration, gene delivery and regulation, and rapid precision molecular diagnostics. In this Review, we examine the development of nanoplasmonic optical antennas for in vitro and in vivo applications. We evaluate the use of optical nanoplasmonic antennas for the optical detection of mRNA in living cells and for in vivo molecular imaging. We also discuss nanoplasmonic optical antennas for in vivo gene delivery and the optical control of gene circuits. Finally, we highlight the use of nanoplasmonic-based molecular diagnostic systems for ultrafast precision medicine. Nanoplasmonics have emerged as a promising technology for applications in life sciences and medicine. In this Review, we discuss the application of nanoplasmonic optical antennas for in vivo intracellular exploration, photonic gene delivery and regulation, and in vitro molecular diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.