Abstract

Here, we report a nanopipette-based electrochemical approach to prepare metal nanoelectrodes with excellent control over electrode size, shape, and thickness of the insulation wall. Nanoelectrodes are prepared by electrochemical plating in a laser-pulled quartz nanopipette tip immersed in a liquid gallium/indium alloy electrode, which not only protects the ultrasmall quartz tip but also starts electrodeposition from the tip orifice. This versatile approach enables reproducible fabrication of electrodes of several different metals, including gold, platinum, silver, and copper. Moreover, nanoelectrodes with varying sizes can be easily prepared by focused ion-beam milling. A unique aspect of this method is the control over the thickness of quartz insulation walls relative to the size of the electroactive surface enabling control of the RG (defined as the radius of the insulating sheath over the radius of the active metal electrode). As such, these nanoelectrodes may be especially attractive as useful nanoprobes in high-resolution imaging applications, such as scanning electrochemical microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.