Abstract
We report the prediction of a high spin injection ratio γ into a semiconductor (SC) contact, by using a ferromagnetic (FM), small-sized, and cylindrical nanopillar as the spin injector (SI). The increase in spin scattering within the FM nanopillar injects spin current into the SC, effectually mitigates the blockage of SI due to conductance mismatch. To minimize the spreading resistance (SR) which arises due to areal discontinuity at FM-SC interface, a thin low resistance metal is inserted at the interface such that SR is contained within it. With the insertion, we obtained γ of as high as 40%, compared to just 3% without insertion, and an even lower value of 0.5% without the nanopillar patterning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.