Abstract

AbstractThis review focuses on the optical theory and applications of a single subwavelength aperture in a metal film. We begin with Bethe’s aperture theory for the optical transmission through a subwavelength aperture in a perfect electric conductor film and extend the discussion to apertures in real metals of finite thickness and to apertures with different shapes. Extraordinary optical transmission (EOT) is reviewed, particularly for an aperture in a transverse waveguide screen and for waveguide EOT with applications to aperture near-field probes. We overview applications of single subwavelength nanoapertures to refractive index sensing, single molecule fluorescence detection, Raman spectroscopy and optical trapping of dielectric nanoparticles, including biological matter. Finally, we discuss the potential of combining these many different capabilities to create greater functionality with a single aperture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.