Abstract

Recent advances in low-dimensional materials and nanofabrication technologies have stimulated many breakthroughs in the field of nanophotonics such as metamaterials and plasmonics that provide efficient ways of light manipulation at a subwavelength scale. The representative structure-induced spectral engineering techniques have demonstrated superior design of freedom compared with natural materials such as pigment/dye. In particular, the emerging spectral routing scheme enables extraordinary light manipulation in both frequency-domain and spatial-domain with high-efficiency utilization of the full spectrum, which is critically important for various applications and may open up entirely new operating paradigms. In this review, a comparative introduction on the operating mechanisms of spectral routing and spectral filtering schemes is given and recent progress on various color nanorouters based on metasurfaces, plasmonics, dielectric antennas is reviewed with a focus on the potential application in high-resolution imaging. With a thorough analysis and discussion on the advanced properties and drawbacks of various techniques, this report is expected to provide an overview and vision for the future development and application of nanophotonic color (spectral) routing techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.