Abstract

This paper compares the performances of various nanophotonic biosensors developed in three recent European Lab-on-Chip collaborations: SABIO, INTOPSENS and POSITIVE. These are attractive for biosensing due to their small footprint, high Q-factors and compatibility with on-chip optics and microfluidics enabling integrated sensor arrays for compact lab-on-chip (LOC) applications. Many applications typically require the addressing of a number of issues including: improving limit of detection, managing the influence of temperature, parallelization of the measurement for higher throughput and on-chip referencing, efficient light-coupling strategies to simplify alignment, and packaging of the nanophotonics chip and integration with microfluidics. For ring resonator-based sensors, volumetric sensitivities of 246 nm/RIU and 2169 nm/RIU and limits of detection of 5 × 10−6 RIU and 8.3 × 10−6 RIU were reported from SABIO (at 1.3 μm) and INTOPSENS (at 1.5 μm), respectively. For SABIO, this was for an eight-channel Si3N4 slot-waveguide ring resonator sensor array whilst for INTOPSENS this was for an individual Si Vernier cascade sensor. In POSITIVE for porous alumina-based membrane sensors, a volumetric limit of detection (LOD) was reported at 5 × 10−6 RIU but more importantly, in contrast to the sensors from the other two projects, the standard deviation of the measured values was below 5 %, sensing response times were fast and small sample volumes could be used (<100 μl). For biosensing within SABIO, a surface limit of detection of 0.9 pg/mm2 for anti-BSA on a gluteraldehyde-covered surface was recorded corresponding to a 125 ng/ml anti-BSA solution, whilst Si slot-waveguide ring resonators have reported 2 pg/mm2 and 10 ng/ml for biotin on a streptavidin-coated surface. In contrast, in POSITIVE, for an assay of β-lactoglobulin-anti-β-lactoglobulin-anti-rabbit-IgG-streptavidin-conjugated CdSe quantum dots, a noise floor for individual measurements of 3.7 ng/ml (25 pM) was obtained, with an overall statistical, or formal assay LOD of 33.7 ng/ml (225 pM), for total assay times of under 1 h. With similar volumetric limits of detection, the sensors are still poorer than that of the state of art in nanophotonic sensors; however, the POSITIVE device compared favourably to it at least for total assay times, response times and minimum volumes of analyte necessary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call