Abstract

Nanophase separation on length scales of 1-5 nanometres has been reported previously for small-molecule liquids, metallic glasses and also for several semicrystalline, liquid-crystalline and amorphous polymers. Here we show that nanophase separation of incompatible main and side-chain parts is a general phenomenon in amorphous side-chain polymers with long alkyl groups. We conclude from X-ray scattering and relaxation spectroscopy data for higher poly(n-alkyl acrylates) (PnAA) and poly(n-alkyl methacrylates) (PnAMA) that alkyl groups of different monomeric units aggregate in the melt and form self-assembled alkyl nanodomains with a typical size of 0.5-2 nm. A comparison with data for other polymer series having alkyl groups reveals that important structural and dynamic aspects are main-chain independent. A polyethylene-like glass transition within the alkyl nanodomains is observed and discussed in the context of a hindered glass transition in self-assembled confinements. This is an interesting link between central questions in glass-transition research and structural aspects in nanophase-separated materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.