Abstract

Ga2O3 has emerged as a promising material for the wide-bandgap industry aiming at devices beyond the limits of conventional silicon. Amorphous Ga2O3 is widely being used for flexible electronics, but suffers from very high resistivity. Conventional methods of doping like ion implantation require high temperatures post-processing, thereby limiting their use. Herein, an unconventional method of doping Ga2O3 films with Si, thereby enhancing its electrical properties, is reported. Ion-beam sputtering (500eV Ar+) is utilized to nanopattern SiO2-coated Si substrate leaving the topmost part rich in elemental Si. This helps in enhancing the carrier conduction by increasing n-type doping of the subsequently coated 5nm amorphous Ga2O3 films, corroborated by room-temperature resistivity measurement and valence band spectra, respectively, while the nanopatterns formed help in better light management. Finally, as proof of concept, metal-semiconductor-metal (MSM) photoconductor devices fabricated on doped, rippled films show superior properties with responsivity increasing from 6 to 433mAW-1 while having fast detection speeds of 861µs/710µs (rise/fall time) as opposed to non-rippled devices (377ms/392ms). The results demonstrate a facile, cost-effective, and large-area method to dope amorphous Ga2O3 films in a bottom-up approach which may be employed for increasing the electrical conductivity of other amorphous oxide semiconductors as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call