Abstract
AbstractA novel nanopatterning process was developed by combining capillary force lithography (CFL) and microcontact printing (µCP). Flat polydimethylsiloxane (PDMS) was used as the substrate in CFL, and after chemical functionalization, as the stamp in µCP, which increased the resolution of both methods. The polymer patterns, produced by CFL on a thin polymer film on the flat PDMS substrate, acted as a mask to oxidize the uncovered regions of the PDMS. The chemical patterns were subsequently formed by gas phase evaporation of a fluorinated silane. After removal of the polymer, these stamps were used to transfer thiol inks to a gold substrate by µCP. Gold patterns at a scale of less than 100 nm were successfully replicated by these chemically patterned flat PDMS stamps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.