Abstract

In this study, we fabricated high-brightness white light emitting diodes (LEDs) by developing a nanopatterned yttrium aluminum garnet (YAG) phosphor-incorporated film. White light can be obtained by mixing blue light from a GaN-based LED and yellow light of the YAG phosphor-incorporated film. If white light sources can be fabricated by exciting proper yellow phosphor using blue light, then these sources can be used instead of the conventional fluorescent lamps with a UV source, for backlighting of displays. In this work, a moth-eye structure was formed on the YAG phosphor-incorporated film by direct spin-on glass (SOG) printing. The moth-eye structures have been investigated to improve light transmittance in various optoelectronic devices, including photovoltaic solar cells, light emitting diodes, and displays, because of their anti-reflection property. Direct SOG printing, which is a simple, easy, and relatively inexpensive process, can be used to fabricate nanoscale structures. After direct SOG printing, the moth-eye structure with a diameter of 220nm was formed uniformly on the YAG phosphor-incorporated film. As a result of moth-eye patterning on the YAG phosphor-incorporated film, the light output power of a white LED with a patterned YAG phosphor-incorporated film increased to up to 13% higher than that of a white LED with a non-patterned film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call