Abstract

Oxyfluoride glass-ceramic in the system SiO2–Al2O3–CaF2–SmF3 containing Sm3+-doped CaF2 nanocrystals in the range from 15 to 150 nm size were produced by using the controlled ceramization of the precursor glass. The incorporation of the Sm3+-dopant ion in the glass ceramic creates new electron-trapping centers and thermoluminescence (TL) method has been used in order to trace their evolution during glass ceramization. The 370 °C TL peak observed in precursor glass has been assigned to the recombination of the electrons released from the Sm2+-traps in the amorphous glass network. In the glass-ceramic sample containing nanocrystals with about 15 nm size the new weak TL peaks at 270, 290, and 310 °C were attributed to the recombination of the electrons released from the Sm2+-traps located mainly at the surface of the CaF2 nanocrystals. In the glass-ceramic sample containing nanocrystals with about 150 nm size, the new TL peaks at 232, 270, and 302 °C size have been assigned to the recombination of the electrons released from the Sm2+-traps located inside the CaF2 nanocrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.