Abstract

Nanoparticles (NPs) of poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymers with various PLA:TPGS component ratios were prepared by the double emulsion technique for protein drug formulation with bovine serum albumin (BSA) as a model protein. Influence of the PLA:TPGS component ratio and the BSA loading level on the drug encapsulation efficiency (EE) and in vitro drug release behavior was investigated. The PLA-TPGS NPs achieved 16.7% protein drug loading and 75.6% EE, which exhibited a biphasic pattern of controlled protein release with higher initial burst for those NPs of more TPGS content. Furthermore, the released proteins retained good structural integrity for at least 35 days at 37 °C as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and circular dichroism (CD) spectroscopy. Compared with other biodegradable polymeric NPs such as poly( d, l-lactide-co-glycolide) (PLGA) NPs, PLA-TPGS NPs could provide the encapsulated proteins a milder environment. Confocal laser scanning microscopy (CLSM) observation demonstrated the intracellular uptake of the PLA-TPGS NPs by NIH-3T3 fibroblast cells and Caco-2 cancer cells. This research suggests that PLA-TPGS NPs could be of great potential for clinical formulation of proteins and peptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call