Abstract

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle-East Asia Minor 1 is a major pest of agricultural production systems. It is controlled by synthetic insecticides. Essential oils are promising eco-friendly alternatives. This study developed and characterized nanoparticles loaded with essential oils of Zanthoxylum riedelianum Engl. (Rutaceae) leaves and evaluated their potential for B. tabaci management. The essential oil exhibited an average yield of 0.02% (w w-1) and showed as major components γ-elemene (24.81%), phytol (18.16%), bicyclogermacrene (16.18%), cis-nerolidol (8.26%), and D-germacrene (6.52%). Characterization of the nanoparticles showed a pH between 4.5 and 6.7, a zeta potential of approximately - 25mV, particle-size distribution ranging from 450 to 550nm, and encapsulation efficiency close to 98%. The nanoencapsulation was an efficient process that provided photostability against photodegradation. Bioassays with crude and nanoencapsulated essential oils significantly reduced the number of nymphs and eggs of B. tabaci, with the best results observed at concentrations of 5 and 2% (v v-1). Our results demonstrated that essential oils from Z. riedelianum can be nanoformulated resulting in a stable product while maintaining their biological activity against B. tabaci Middle-East Asia Minor 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call