Abstract

Bone healing is a complex cascade involving precisely coordinated spatiotemporal presentation of multiple growth factors (GFs), including osteogenic and angiogenic GFs, and each stage of bone healing requires varying types and content of GFs. In this study, we fabricated a composite nanocoating with tunable vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) that was coated on the surface of a polydopamine (PDA)-decorated tertiary calcium phosphate (TCP) scaffold using VEGF-loaded chitosan/bovine serum albumin nanoparticles (CS/BSA-NPs) and BMP-2-loaded poly-L-lysine/oxidized alginate nanoparticles (PLL/OALG-NPs). It was found that VEGF could be efficiently released to promote vascularization in early bone repair stages due to the rapid biodegradation of CS/BSA-NPs, while bone formation can be promoted by a sustained release of BMP-2 from the slowly degrading PLL/OALG-NPs. The composite coating and TCP scaffold can be conjugated due to the excellent adhesive property of PDA. The composite coating can achieve the rapid release of VEGF and sustained release of BMP-2, which can activate GFs for accelerating bone healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call