Abstract

MgO nanocubes with an average particle size of 8 nm were used to support thermally stable CaO deposits. Energy-filtered transmission electron microscopy (EFTEM) reveals their unprecedented high dispersion with sizes significantly below 4 nm. CaO-specific photoluminescence emission results from the photoexcitation of oxygen anions in edges and oxygen-terminated corners that, for the first time, are available at a sufficiently high concentration to be detected by ensemble averaging techniques. The presented approach can be easily extended to a variety of other thermally labile oxides that find important applications in optics, sensing, and catalysis and, on this base, can be incisively characterized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.