Abstract

We have investigated the thermally induced transformation of various residues of the corn plant into nanoparticles and nanorods of different silicon carbide (SiC) polytypes. This has been accomplished by both microwave-induced and conventional furnace pyrolysis in excess of 1450 °C in an inert atmosphere. This simple process of producing nanoparticles of different polytypes of SiC from the corn plant opens a new method of utilizing agricultural waste to produce viable industrial products that are technologically important for nanoelectronics, molecular sensors, nanophotonics, biotechnology, and other mechanical applications. Using x-ray and Raman scattering characterization, we have demonstrated that the processed samples of corn husk, leaves, stalks, and cob consist of SiC nanostructures of the 2H, 3C, 4H, and 6H polytypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.