Abstract

Nanotechnology is revolutionizing human medicine. Nanoparticles (NPs) are currently used for treating various cancers, for developing vaccines, and for imaging, and other promises offered by NPs might come true soon. Due to the interplay between NPs and proteins, there is more and more evidence supporting the role of NPs for treating amyloid-based diseases. NPs can induce some conformational changes of the adsorbed protein molecules via various molecular interactions, leading to inhibition of aggregation and fibrillation of several and different amyloid proteins. Though an in depth understanding of such interactions between NPs and amyloid structures is still lacking, the inhibition of protein aggregation by NPs represents a new generation of innovative and effective medicines to combat metabolic diseases such as type 2 diabetes (T2D). Here, we lay out advances made in the field of T2D notably for optimizing protein aggregation inhibition strategies. This Account covers discussions about the current understanding of β-cells, the insulin producing cells within the pancreas, under diabetic conditions, notably increased glucose and fatty acid levels, and the implication of these conditions on the formation of human islet amyloid polypeptide (hIAPP) amylin oligomers and aggregates. Owing to the great potential of carbon nanostructures to interfere with protein aggregation, an important part of this Account will be devoted to the state of the art of therapeutic options in the form of emerging nanomaterials-based amyloidosis inhibitors. Our group has recently made some substantial progress in this regard by investigating the impact of glucose and fatty acid concentrations on hIAPP aggregation and β-cell toxicity. Furthermore, the great potential of carbon nanocolloids in reversing hIAPP aggregation under diabetic conditions will be highlighted as the approach has been validated on β-cell cultures from rats. We hope that this Account will evoke new ideas and concepts in this regard. We give some lead references below on pancreatic β-cell aspects and carbon quantum dots for managing diabetics and nanomedicine related aspects, a topic of interest in our laboratory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call