Abstract
Liquid-crystalline blue phases exhibit exceptional properties for applications in the display and sensor industry. However, in single component systems, they are stable only for very narrow temperature range between the isotropic and the chiral nematic phase, a feature that severely hinders their applicability. Systematic high-resolution calorimetric studies reveal that blue phase III is effectively stabilized in a wide temperature range by mixing surface-functionalized nanoparticles with chiral liquid crystals. This effect is present for two liquid crystals, yielding a robust method to stabilize blue phases, especially blue phase III. Theoretical arguments show that the aggregation of nanoparticles at disclination lines is responsible for the observed effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.